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ABSTRACT 
The formalism for calculating the stopping of energetic light ions (H, He and Li) at energies 
above 1 MeV/u, has advanced to the point that stopping powers may now be calculated with 
an accuracy of a few percent for all elemental materials. Although the subject has been of 
interest for a century, only recently have the final required corrections been understood and 
evaluated. The theory of energetic ion stopping is reviewed with emphasis on those aspects 
that pertain to the calculation of accurate stopping powers. 
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HISTORICAL REVIEW 
Soon after the discovery of energetic particle emission from radioactive materials, there was 
interest in how these corpuscles were slowed down in traversing matter. From her work in 
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1898-1899, Marie Curie stated the hypothesis that "les rayons alpha sont des projectiles 
materiels susceptibles de perdre de leur vitesse en traversant la matiere."1  Many scientists 
immediately realized that since these particles could penetrate thin films, such experiments 
might finally unravel the secrets of the atom. Early attempts to create a particle energy loss 
theory were inconclusive for there was not yet an accurate proposed model of the atom. The 
theoretical treatment for the scattering of two point charges was derived by J. J. Thomson 
in his classic book on electricity.2  Much of the traditional particle energy-loss symbolism 
can be traced to this book which introduced a comprehensive treatment for classical 
Coulombic scattering between energetic charged particles. This work, however, did not 
attempt to calculate actual stopping powers. 

Enough experimental evidence of radioactive particle interactions with matter was collected 
in the next decade to make stopping power theory one of the central concerns of those 
attempting to develop an atomic model. In 1909, Geiger and Marsden were studying the 
penetration of alpha-particles through thin foils, and the spread of the trajectories after 
emerging from the back side.3 They reported that about .01% of the heavy alpha-particles 
were scattered backwards from the target, and from an analysis of the data statistics such 
backscattered events had to be from isolated single collisions. Two years later, Rutherford 
was able to demonstrate theoretically that the backscattering was indeed due to a single 
event, and by analyzing this and electron scattering data he was able to first calculate that 
the nucleus of Al atoms must have a mass of about 22 and platinum would have a mass of 
138 !4 J. J. Thomson, director of the prestigious Cavendish Laboratory, and Niels Bohr, a 
fresh post-doctoral scientist who had left the Cavendish lab for Rutherford's Manchester 
Laboratory, published almost simultaneously an analysis of the stopping of charged 
particles by matter.5 These papers illustrate much of their divergent ideas on the model of 
an atom. Thomson incredibly ignored the alpha-particle backscattering measurements of 
Geiger3 and the Rutherford heavy-particle scattering theory4 which emphasized the atomic 
positive charge must be concentrated within the atom. But the nuclear atom with a heavy 
positively-charged core was the basis of Bohr's ideas.67 Bohr's early work is instructive 
because for the first time a unified theory of stopping was attempted, and we can see in this 
and in similar works the essential problems of stopping theory: 

• How does an energetic charged particle (a point charge) lose energy to the quantized 
electron plasma of a solid (inelastic energy loss)? 

• How do you incorporate into this interaction simultaneous distortion of the electron 
plasma caused by the particle (target polarization)? 

• How can you extend the point charge-plasma interaction to that for a finite moving 
atom in a plasma? 

• How do you estimate the degree of ionization of the moving atom and describe its 
electrons when it is both ionized and within an electron plasma? 

• How do you calculate the screened Coulomb scattering of the moving atom with each 
heavy target nucleus it passes? 

• How do you include relativistic corrections to all of the above? 

This is a brief list of the major problems encountered, and scientific interest shifts back and 
forth between them over the decades because of external scientific tidal forces such as (a) 
the development of quantal scattering in the nineteen twenties, (b) the study of nuclear 
fission in the thirties and forties, (c) the study of nuclear physics in the fifties, (d) the 
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technological applications of ion implantation for material modification in the sixties, and 
the use of ion beams in material analysis and in radiation oncology in the seventies. This 
ebb and flow of interest continues because of the recurrent importance of the problem, and 
the difficulty of calculating the penetration of energetic atoms in solids from first principles. 
We briefly review some of the historical milestones in this field below. 

One of Bohr's original conclusions was that the energy loss of ions passing through matter 
could be divided into two components: nuclear stopping (energy loss to the medium's atomic 
positive cores) and electronic stopping (energy loss to the medium's light electrons). Bohr, in 
his first papers, correctly deduced that the electronic stopping would be far greater than the 
nuclear stopping for energetic light ions such as are emitted by radioactive sources. This 
conclusion was based on recoil kinematics considering only the relative masses and 
abundance of the target electrons and nuclei. Bohr further introduced atomic structure into 
stopping theory by giving target electrons the orbital frequencies obtained from optical 
spectra and calculating the energy transferred to such harmonic oscillators.  He noted that 
the experimentally reported stopping powers for heavy atom targets indicated that many 
electrons in these targets must be more tightly bound than the optical data suggested. He 
also realized that his accounting of the energy loss process was seriously limited by a lack of 
knowledge of the charge state of the ion inside the matter, i.e., its effective charge in its 
interaction with the target medium. 

A major advance in understanding stopping powers came 20 years later when Bethe89 and 
Bloch1011 restated the problems from the perspective of quantum mechanics, and derived in 
the Born approximation the fundamental equations for the stopping of very fast particles in 
a quantized medium. This theoretical approach remains the basic method for evaluating 
the energy loss of light particles with velocities above 1 MeV/amu. 

THE BETHE-BLOCH EQUATION 
The stopping of high velocity light ions in matter usually assumes two major simplifications 
in stopping theory: (1) the ion is moving much faster than the target electrons and is fully 
stripped of its electrons, and (2) the ion is much heavier than the target electrons. In 
general, this paper will treat light ions (H, He and Li) with energies between 1 MeV/u to 10 
GeV/u. Considerations of partial ion neutralization at lower velocities establishes the lower 
energy limit (see details in the section Low Velocity Limits), while the upper energy limit is 
constrained by the lack of experimental data. 

Extended reviews of the early concepts of Bohr, Bethe and Bloch, with significant additions 
using quantum-mechanical perturbation treatments, have been written by Fano12-16, 
Inokuti17, Bichsel18, Sigmund19, Jackson20 and Ahlen21  

Relativistic quantum mechanics allows quite different approaches to analyze the transfer of 
energy from the particle to the medium, and the results of using various theoretical 
procedures are sometimes difficult to compare. All attempts to create tables of high energy 
ion stopping powers have required normalization of the theory to experimental data to 
obtain accurate values (see books by Fano22, Northcliffe23, Janni24, Andersen25, Ziegler26 and 
the ICRU27). 

Bohr's early work evaluated the classical stopping of a fast heavy charged particle to an 
electron bound in a harmonic potential.6,7  This early work was extended by others who 
applied quantum mechanics to particle energy loss - of note was the early work by 
Henderson in 1922, who considered the energy loss by a particle to an atom with quantized 
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electrons, but ignored distant interactions or any collective excitation of the electronic 
medium of the target.28 Gaunt, in 1927, applied a quantum mechanical treatment to the 
perturbation of atomic electrons by a charged particle.29 Unfortunately, Gaunt made an 
error in one approximation that led to the wrong formula for the particle’s energy loss.30 
Bethe presented the first complete solution to high velocity stopping using the first Born 
approximation where the entire physical system is considered quantized.8 Then Moller31 
and Bethe9 extended these ideas by including relativistic corrections. 

The following theoretical review will assume the following symbols: 
Z1 = Particle atomic number 

M1 = Particle mass (u) 
E = Particle energy 
v = Particle velocity 

vo = The Bohr velocity = e2/h = 25 keV/u 
b = Impact parameter of particle to a target electron 

Z2 = Target atomic number 
M2 = Target atomic weight (u) 
N = Density of target atoms per unit volume 
e = Charge of an electron 

me = Mass of an electron 
c = Velocity of light 
β = Relative particle velocity, v/c 

Certain primary assumptions pertain to all theories described. The particle is assumed to 
interact with the target only through electromagnetic forces. Any energy loss to nuclear 
reactions between the particle and the target nuclei are ignored. For high velocities, Bethe 
showed that the ratio of the energy loss by the particle to the target electrons was greater 
than the loss to the heavier target nuclei by at least M2/meZ2.8 Less than 0.1% of the 
energy loss of high velocity particles is to the target nuclei (ignoring nuclear reactions). 
Hence we shall not evaluate the energy loss between the particle and the target nuclei. 

With the above assumptions, we can reduce the energy loss problem to one which considers 
only the energy loss by the high velocity particle to the atomic electrons, which are bound to 
infinitely heavy nuclei. 

There are two basic approaches used to evaluate a particle’s energy loss to target electrons. 
These are the Bohr approach, which is dependent on the impact parameter between the 
particle’s trajectory and the target nucleus, and the Bethe approach which depends on 
momentum transfer from the particle to the target electrons. Bethe’s approach was 
necessary since quantum mechanics prohibits a particle with a well defined momentum 
having a spatially localized position. Hence Bohr’s concept of an impact parameter (defined 
in 1913, before quantum mechanics was developed) could not be directly upgraded to wave 
mechanics. There was no quantized solution to close collisions if one attempted to use the 
Bohr impact parameter concepts. 

Briefly, the highlights of the Bethe-Bloch theory are described below. The reader is referred 
to the lengthy tutorials cited in the first paragraph of this paper for extended derivations. 

The classical Bohr approach considers an heavy charged particle of charge, Z1e, moving at a 
velocity, v, passing near a light electron of charge, e, and mass, m, at an impact parameter, 
b. The transverse momentum impulse, ∆p, to the light electron is: 
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where E  is the transverse electrical field. The energy transferred is then: 
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This expression assumes that the electron does not move much relative to the impact 
parameter, b. To obtain the stopping power, S, this transferred energy must be integrated 
over all possible impact parameters, b. Assuming the target is made of atoms of atomic 
number, Z2. the energy loss per target atom is : 
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The integral of this expression diverges as b → 0, so it is necessary to argue a minimum 
impact parameter, bmin. If the electron mass is assumed to be very much smaller than the 
mass of the incident particle, the electron will recoil strongly for very small impact 
parameters. Noting that the maximum energy transfer is for a head-on collision, we may 
use Rutherford two-particle elastic scattering to estimate the closest distance of approach 
for a head-on collision. This gives a minimum distance of bmin ∼ Z1e2/mv2. 

The integral also becomes undefined for bmax→ ∞. This can be made tractable by noting 
that, for distant collisions, if the interaction is long compared to the orbiting frequency of an 
electron, the collision will become adiabatic and no energy will be transferred. This 
suggests a cutoff when the collision time becomes longer than the orbital frequency, bmax∼ 
v/ω, where ω is the orbital frequency. 

Inserting these values for bmin and bmax, the energy loss becomes: 
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The relativistic form of this equation is made by equating the particle’s energy, E = γ M1c2, 
where γ = 1/(1-β2)½ and β=v/c. This expands bmax∼ γv/ω, and bmin ∼ Z1e2/γmv2 and the integral 
becomes: 
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Bohr used this expression to form the basis of his evaluation of the energy loss of a heavy 
particle to a medium of harmonically bound electrons.6 

Bloch evaluated the differences between the classical (Bohr) and quantum-mechanical 
(Bethe) approaches for particles with velocities much larger than the target electrons . He 
showed that Bohr’s approach was valid also in the quantum mechanics of a bound electron 
if the energy transferred was assumed to be the mean energy loss, summed over all possible 
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atomic transitions. However, Bloch needed to assume the dipole approximation (impact 
parameter >> orbit diameter) to avoid the localization problem discussed above. 

Bloch then analyzed the problem of close collisions. He did not assume, as Bethe had done, 
that it was valid to consider the electrons to be plane waves in the center of momentum 
frame. Instead, he confined the electrons to the interior of a cylinder, which then introduced 
transverse momentum components that interfere with one another under the forces of the 
electromagnetic interaction. This led to quite different momentum transfers than for the 
case of Bethe’s plane wave scattering. 

Bloch then showed that for low momentum transfers, his cylinder confinement radius 
would be large enough to permit the use of Bethe’s plane-wave approach, and so for these 
collisions the Bethe approach was correct. Further, for large momentum transfers, the wave 
packets would scatter classically, and hence the Bohr approach would be valid. Thus Bloch 
found the bridging formulation between the classical Bohr impact-parameter approach, and 
the quantized Bethe momentum transfer approach to energy loss. Unfortunately, Bloch 
made a small error in estimating one scattering cross-section, and his final formula as 
presented in original the paper contains an error. 

The original Bethe-Bloch relativistic stopping formula, S may be stated as: 

Eq. 7 S
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where <I> is the averaged excitation potential per electron, and is defined as 

Eq. 8 ln ln< > =∑I f En n  

where the logarithm of the mean ionization potential, ln <I>, can be expanded as the dipole 
oscillator strength for the nth energy level: 
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Normalization for this sum rule is that Σfn = 1. 

The final term, Ψ(Z1) in Eq. 7, is a small term which contains Bloch’s error so that the Bloch 
result does not reduce to the Bethe result for the limit Z1α/β → 0, where α = the fine 
structure constant, e2/hc = 1/137. 

Variations of the Bethe-Bloch Equation  

The theoretical studies of the energy loss of high velocity particles have been active for 
almost a century. The earliest works which are still quoted are those by J. J. Thomson - 
1903, 191232, E. Rutherford - 191133 and N. Bohr - 191334. There are many traditions, 
practices and nomenclature that may make the field difficult to understand. Below we 
review some of the most widely used conventions. 

Fano published various extensions of Bethe’s and Bloch’s work which summarized most of 
the theoretical work in the prior fifty years.12-15  The reader is referred to Fano’s landmark 
review paper for a detailed derivation of many concepts and approximations.16  
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Fano’s approach was to consider the momentum, q, transferred to a bound electron with an 
energy transfer, ∆E. Consider three regions for the energy transfer to an atomic electron at 
a distance, r, from the particle: 

1. For small ∆E, one assumes that q.r << h, so that the interaction between the particle 
and electron reduces to dipole matrix elements. 

2. For mid-∆E (the definition of mid-∆E is quite complex), one assumes that only the 
longitudinal electromagnetic terms of the interaction contribute to the momentum transfer. 

3. For large ∆E, one assumes that the target electrons may be considered to be unbound, 
and the transfer can be reduced to standard two-particle relativistic interactions. 

Assuming these approximations, Fano described a relativistic version of the Bethe-Bloch 
energy loss formula where two additional corrective terms are included, the Shell 
Correction term, C/Z2, and the Density Effect correction term, δ/2 (these will be described 
in detail later): 

Eq. 10 
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which is usually simplified using the definitions: 

 ro  ≡ e2/mc2   (the Bohr electron radius) 

Eq. 11 f(β)  ≡ ln[ 2mc2β2/(1-β2)] - β2 (combining the relativistic terms) 

Eq. 12 S
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The prefactor constant to this equation can also be simplified, using the definition κ ≡ 
4πr02mec2. The pre-factor constants have the value, 4πr02mec2 = 0.0005099, for stopping in 
units of eV/(1015 atoms/cm2), which is about the energy loss per mono-layer in a solid. This 
pre-factor may be converted to stopping units of keV/(mg/cm2) by multiplying the above pre-
factor by (N0/1021M2), where N0 = Avagadro’s number, 6.02213x1023 , and M2 is the target 
atomic weight (u). Thus the stopping pre-factor, κ, is 0.3071/M2 for stopping units of 
keV/(mg/cm2), which is the energy loss per mg/cm2 of the target transited. 

There have been many corrections proposed to improve on Fano’s theoretical 
approximations. Traditionally, this is done by expanding this equation in powers of Z1, 
which can be used to add additional corrections to the ion and target interaction: 

The Bethe-Bloch stopping power formula is commonly expressed as: 

Eq. 13  [ ]S
Z
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β
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2 2L ( ) +  Z L ( ) +  Z ( ) ...0 1 1 2 2  

where the term, L0, contains all the correction factors of the Fano formulation, Eq. 12, and 
extra higher order terms are added, L1, L2 …, which will be discussed below. 

The term in the brackets of Eq. 13 is defined as the Stopping Number, L(β),and this 
expansion will contain all the corrections to the basic two-particle energy loss process. 

Eq. 14 L(β) ≡ L0(β) + Z1L1(β) + Z1
2L2(β)... 
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This reduces the Bethe-Bloch formula to its simplest notation: 

Eq. 15 S
Z

Z L=
κ
β

β2
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2 ( )  

The second term of the stopping number expansion, L1, is usually called the Barkas 
Correction or the Z13 Correction, and the third term, L2, is called the Bloch Correction 
or the Z14 Correction. Note that only the stopping number term L1 contains an odd power 
of Z1, and hence would be sensitive to the sign of the particle’s charge (positive or negative). 
The implications of this are discussed in the later section on the Barkas effect. 
Rigorously , the name “Barkas Correction” should apply to the sum of all odd-power terms 
of Z1 in Eq. 13 because it is based in part on the stopping differences between particles with 
opposite charge signs (+ or -). But since this term is historically used only for the factor 
L1Z1, we shall continue this practice. 

Low Velocity Limit of the Bethe-Bloch Theory: Particle 
Neutralization 

The above discussion concerns the evaluation of the energy loss by a heavy charged particle 
to target electrons. However, at low velocities, the particle may capture electrons from the 
target and partially neutralize its nuclear charge. The Bethe-Bloch equation, in all its 
forms, requires a constant particle charge. Thus a lower limit to its applicability is 
necessary. Estimating the degree of particle neutralization has a long theoretical history. 
Various approaches may be understood by looking at the basic scaling relationships of the 
Thomas-Fermi atom: 

Eq. 16 

 Charge density ≡ ρ ∝ Z2 

 Electron binding energy ≡  Eb ∝  Z7/3 

 Binding energy / electron ≡ eb ∝ Z4/3 

 Electron velocity ≡ ve ∝ Z2/3 

Historically, scaling laws for heavy ions first received considerable attention in 1938-41 
because of interest in nuclear fission experiments. It was recognized that a theory of 
stopping powers and ranges required both understanding the stopping due to the large 
charge-state of fission fragments, and also an understanding of neutralization of the 
particles from captured electrons. Lamb suggested that the particle’s electron binding 
energies would be the primary influence in determining the degree of ionization of the 
fission fragments in matter,35 while Bohr suggested that the electron orbital velocities 
would be the critical parameter.36,37  Later evidence supported the Bohr view that one could 
estimate the particle’s charge neutralization by assuming it to be stripped of all electrons 
whose classical orbital velocities were less than the ion velocity. This Bohr concept was 
later set in explicit form by Northcliffe as:38 
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where Z1* is the statistical net charge on the partially neutralized ion. At high velocities, 
Z1*/Z1 = 1 when the ion is fully stripped. This expression is useful in the analysis of heavy 
ion stopping data, but it is not considered accurate for low mass ions. As an example, Eq. 17 
would indicate that protons could be expected to be 99% stripped at 529 keV, and 99.9% 
stripped at 1191 keV. For He ions these energies are 840 and 1890 keV. Various 
experiments with light ions indicate that these energies are too high (there has been 
extensive discussions of whether protons are ever partially neutralized while in motion, 
since its electron’s orbital diameter would be greater than the mean distance between 
atoms in most solids). 

The term statistical net charge (or effective charge) is sometimes defined as the charge state 
required to reduce calculated Bethe-Bloch stopping to agree with experimental stopping 
values. The implication is that it accounts for the partial neutralization of some of the ions, 
or it compensates for polarization of the target electrons. Clearly, a proton can not have a 
charge of 0.9 units. But, measured low velocity proton stopping powers, averaged over many 
protons, may be reduced to that calculated for a particle with this effective charge due to 
partial neutralization of some of the protons. However, a more reasonable interpretation is 
that the Bethe-Bloch theory is being used beyond its limits, and that this term is just a 
fitting parameter. 

The problem of partial particle neutralization indicates the difficulty of a clear definition of 
where “high velocity” particle stopping starts, and when it can be assumed that the 
particle’s nuclear charge is unshielded by orbital electrons. For light ions, H and He, the 
Bethe-Bloch theory is usually assumed to hold for energies above 1 MeV/amu.27 

THE PRIMARY STOPPING NUMBER,  L0 
The stopping number term, L0, contains the largest corrections to the basic high-energy 
stopping power formula. Fano expressed it theoretically as: 

Eq. 18 L
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where C/Z2 is the shell correction for the target atom, <I> is the mean ionization energy 
of the target atom, and δ/2 is the density effect correction. These three terms correct for: 

C/Z2 - This shell correction term corrects the assumption that the ion velocity is much 
larger than the target electron velocity. The term is usually calculated by detailed 
accounting of the particle’s interaction with each electronic orbit in various elements. This 
term contributes up to a 6% correction to stopping powers, and will be discussed in 
considerable detail later. 

ln <I> This mean ionization term corrects for the quantum mechanical energy levels 
available for transfer of energy to target electrons. It can also be used to correct for any 
band-gap in solids and also target phase changes (e.g. stopping differences in targets of 
water in liquid or vapor states). This term will be discussed in detail later. 

δ/2 - This density effect term corrects for polarization effects in the target, which reduces the 
stopping power since the ion’s electromagnetic fields may not be at the assumed free-space 
values, but reduced by the dielectric constant of the target medium. 
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Figure 1 Evaluation of the term, ∆Emax, on Stopping Powers 

The traditional derivation of the first stopping number term, L0, includes a term which 
indicates the largest possible energy loss in a single collision with a free electron, Eq. 19. 
This plots shows the error introduced to calculated stopping powers by approximating this 
term with the simpler form, Eq. 20, ∆Emax  = (2mec2β2/1-β2). The full term adds a stopping 
correction which is always below 0.1% in effect, and usually is about 0.01%, which is far 
greater accuracy than other terms. So we shall use the abbreviated approximate form for 
∆Emax hereafter.The term ∆Emax, in Eq. 18, is the largest possible energy loss in a single 
collision, and can be defined as:27 
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The magnitude the right-hand correction term to ∆Emax is quite small, and it is usually set 
to unity. In  is shown the effect on calculated stopping powers by considering the full term, 
Eq. 19, and using on the abbreviated term,  

Eq. 20  ∆E
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The full term, Eq. 19, adds a correction which is always below 0.1%, and usually is 
contributes about 0.01%, which is beyond the accuracy of other corrective terms. So we shall 
use the abbreviated form for ∆Emax. 

Note that for non-relativistic energies,  

Eq. 21 ∆E
m c

m ve
emax ≈ −







 ≈

2
1

2
2 2

2
2β

β
 



J. Appl. Phys / Rev. Appl. Phys., 85, 1249-1272 (1999)      Page 11 of 51 

The term ∆Emin is also sometimes used to restrict energy loss processes, which might occur 
with band-gap materials or insulators. Eq. 19 may be considered as the theoretical form of 
L0, since the term ∆Emin is derived by considerations of the target medium.  

By substituting Eq. 21 into Eq. 18, the stopping number term, L0, is converted to an 
equivalent form that is widely used for the analysis of experimental data: 

Eq. 22  L
m c C

Z
Ie

0

2 2

2
2

2

2
1 2

=
−







 − − − < > −ln ln

β
β

β
δ

 

which is commonly simplified with the definition: 

Eq. 11  f(β)  ≡  ln [ 2mc2 β2 / (1-β2)]-β2 

to obtain: 

Eq. 23  L f
C
Z

I0
2 2

= − − < > −( ) lnβ
δ

 

With this equation, and using the Bethe-Bloch equation, Eq. 13, experimental data may be 
directly compared to theoretical evaluations of L0. 

Shell Corrections, C/Z2 

Shell corrections constitute a large correction to proton stopping powers in the energy range 
of 1-100 MeV, with a maximum correction of about 6%. It corrects the Bethe-Bloch theory 
requirement that the particle’s velocity is far greater than the bound electron velocity. As a 
particle velocity decreases from relativistic energies, the particle-electron collisions need to 
be considered with detailed evaluation of each target electron’s orbital bonding in order to 
obtain accurate stopping powers. 

Shell corrections have been calculated using various approximations. As we shall show, 
these all produce approximately the same curves and are effective in correcting stopping 
powers. 

The two most common approaches to calculate non-relativistic shell corrections are: 

Hydrogenic Wave Functions - This HWF approach considers the particle interacting with 
individual target atom electrons which are described by hydrogenic wave functions. 

Local Density Approximation - This LDA approach considers a particle interacting with a 
free electron gas (FEG) of various densities. The shell correction is then extracted by 
considering the target to be a linear superposition of FEG corrections based on their 
weighted densities in the target. 

An early example of the results of these approaches is shown in  



J. Appl. Phys / Rev. Appl. Phys., 85, 1249-1272 (1999)      Page 12 of 51 

 

Figure 2 Early Shell Corrections to High Velocity Stopping 
The basic stopping power formula for high velocity particles assumes that the particle is 
moving much faster than the target electrons. The term “Shell Correction”  is given to 
factors which correct for interactions in which this assumption may not be accurate, for 
example for interactions with inner-shell electrons. 

Shown in the upper set of curves are calculations of the total stopping interaction, and then 
the shell corrections terms are extracted (from Fano in 1963 [12]). The lower curves come 
from shell corrections based on interactions between a particle with hydrogenic electrons 
representing various target atom shells (from Bichsel in 1972 [46]) Both methods yield 
similar curves.There is no comprehensive theory of shell corrections which includes full 
relativistic interactions between the particle and the target, so this aspect of shell 
corrections will not be reviewed. Further, all target electrons are considered to be in 
quiescent orbits, unperturbed by nearby electrons which are also absorbing energy from the 
particle (the binary collision approximation). 

Shell Corrections using Hydrogenic Wave Functions 
Many authors have contributed to the theoretical definition of non-relativistic shell 
corrections using hydrogenic wave functions, see discussions by Bohr (39), Walske (40,41), 
Khandelwal (42), and Fano (16). This approach assumes that the shell correction is the sum 
of contributions from each target atom electron, without correlation. Early corrections were 
published for the k-shells by Walske (1952)40 and Khandelwal (1968)42, for the l-shell by 
Walske (1956)41, Bichsel (1967)43 and Khandelwal (1968)42, and for the m-shell by 
Khandelwal and Merzbacher (1966)44. 

The most widely used shell corrections of this type are those by Bichsel using the 
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hydrogenic wave function approach.45-48 Examples of his work are shown in  

 
Figure 3 Bichsel Hydrogenic Shell Corrections 

Shown are Bichsel’s shell corrections based on hydrogenic wave functions, published after 
twenty years of refinements. The theoretical concepts contain several parameters which 
depend on experimental data for accuracy. The curves go from that for hydrogen targets 
(lowest curve) to uranium (furthest right curve). The shell corrections show a smooth and 
gradual change of shape, with the only small abrupt changes occurring when new shells are 
incorporated into the calculation. 

The primary feature of this type of shell correction is that it is dependent on experimental 
stopping powers of unknown accuracy. Further, when the author extracts the shell 
correction, its magnitude depends on the other stopping corrections which have been used 
to reduce the stopping data. For example, the Barkas correction at 1 MeV/amu has about a 
10% effect on stopping. However, the magnitude of this effect was not well determined 
before about 1990. Tabulations of hydrogenic shell corrections such as quoted in ICRU-3762 
depended on a Barkas correction factor which was about a factor of two in error. Thus the 
shell corrections, which were fit using parameters extracted from experimental data, would 
also be in error. 

Shell Corrections using the Local Density Approximation 
In contrast to the hydrogenic-electron approach, shell corrections may also be calculated 
without any free parameters, and hence their accuracy is fixed. The local density 
approximation (LDA) may be used to obtaining shell corrections, as first indicated by Fano. 
This method calculates the stopping of a particle in an electronic medium, and then 
extracts the shell corrections by inverting the Bethe-Bloch equation, Eq. 13, expanding L0, 
and solving for the shell correction.16 This inversion is shown below, with the calculated 
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stopping of the particle indicated by the term, Scalc (to distinguish it from Sexp which will be 
used later):. 

Eq. 24  2
2

1112
12

2

2 2
ln)( LZLZ

ZZ
SIf

Z
C calc ++−−><−=

δ
κ
ββ  

Examples of obtaining shell corrections using this method requires the calculation of 
stopping powers, S, using a different method, and then using Eq. 24 to extract shell 
corrections. Since calculations of stopping powers using the local density approximation 
does not use explicit shell corrections, the use of Eq. 24 allows these values to be directly 
compared to those calculated using hydrogenic wave functions. 

The first attempt to evaluate electronic stopping cross-sections for protons in solids using 
the Lindhard stopping formalism and the local density approximation was by Bonderup 
who used Lenz-Jensen atoms to represent the atoms in the solid.89 This work was extended 
to isolated Hartree-Fock atoms by Rousseau et al.49 and to actual solid-state charge 
distributions by Ziegler.26 

The LDA approach assumes that the gradient of electron densities in the target is small, 
and that the response of any volume element of the target is independent of other elements. 
The first assumption can be made tractable by using very small volume elements, but any 
error introduced by the second assumption is difficult to evaluate. Note that the LDA 
approach can not directly evaluate the effects of many basic solid state parameters such as 
band gaps and surfaces 

Note that Eq. 24 requires the knowledge of the mean ionization potential, <I>. The 
theoretical calculation of the mean ionization potential has a long history, for it is a 
straight-forward calculation which may be done with almost any theoretical atom. 
Bonderup used the estimate that <I> = 11.4 Z2 (eV), and then solved for the shell correction 
term, C/Z2. 

There have been many other calculations of <I>. Summaries of these calculations may be 
found in reviews such as by Fano22, Ziegler50, Ahlen21 or the ICRU27. In the local density 
approximation, the value of <I> may be calculated using : 51,88,89,52 

Eq. 25   ln ln( )< > = ∫I
Z

dV
V1

2
0χ ω ρh  

Where Z2 is the target atom atomic number, ω0 is the classical plasma frequency,    ω0 = (4 π 
ρ e2 / m)½, and χ is a constant of the order of 1 and has been estimated by various theorists 
to be between 1 and 1.5.  

Shown in Figure 4 are shell corrections calculated using the above formalism with Hartree-
Fock solid-state charge distributions. One primary difference between this approach and 
using hydrogenic wave functions is the LDA approach is an ab initio calculation, without 
any free parameters. 
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Figure 4 Lindhard Winther LDA Shell Corrections 

Shown are shell corrections by Ziegler, based on Lindhard Winther’s theory of particle 
stopping in a free electron gas, with the local density approximation (LDA) being used to 
generate shell corrections. This calculation is ab initio, without free parameters The curves 
go from that for hydrogen targets (lowest curve) to uranium (highest curve). The shell 
corrections show a smooth and gradual change of shape, with the only small abrupt 
changes occurring when new shells are incorporated into the calculation. Although this 
calculation is based on totally different assumptions as those based hydrogenic atoms, the 
results are quite similar. 

Empirical Summed Shell and Ionization Corrections 

Fano suggested
22

 that the calculation of the mean ionization potential, and the shell 
correction, could properly be linked as a single term which could be evaluated directly from 
experimental stopping data, Sexp, by rearranging Eq. 24:

 
 

Eq. 26 ln ( ) exp
< > + = −
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where Sexp is the experimentally measured electronic stopping power. This approach has 
the advantage of isolating the two factors in the Bethe-Bloch equation which require 
extensive theoretical models, i.e. the mean ionization potential, <I>, and the shell 
correction, C/Z2. Using this equation, experimental data may be shown in reduced form and 
compared to theoretical calculations.  

The importance of this approach is for the interpolation of stopping powers to targets with 
little experimental data. If the summed terms could be directly obtained from experimental 
data, then these can be used to interpolate for stopping powers of similar targets without 
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experimental data. This technique was first used by Ziegler to extract the summed 
correction terms in order to normalize stopping calculations for targets without data, or to 
extrapolate to energies without experimental data.50 

 

Figure 5 Determining (ln<I> + Shell Corrections) for Ag(47) 

The upper figure shows experimental data for the stopping of H ions in a target of silver, 
Ag(47), from 26 papers. The data has been reduced using Eq. 26, so the plot indicates the 
summed terms of ln<I> +C/Z2 as a function of ion energy, MeV/u. The curved line shows the 
summed corrections, while the straight line indicates the calculated value of <I> = 351 eV, 
using Eq. 25. The value of <I> can be empirically determined by moving the curve vertically 
until it fits the data. The lower figure shows the summed corrections adjusted by increasing 
the fitted value of <I> to 491 eV from the original 351 eV. The theoretical curve agrees well 
with the data, and can be used to extrapolate to higher energies with confidence. 

An example of this is shown in Figure 5 for stopping data for H ions in silver, Ag(47). The 
data has been reduced using Eq. 26, so the plot indicates the summed terms of ln<I> +C/Z2 
as a function of ion energy, MeV/u. The curved line shows the theoretical summed 
corrections, while the straight line indicates the calculated value of <I> = 351 eV, which 
was determined using Eq. 25. The value of <I> can be empirically determined by moving 
the curve vertically until it fits the data. The lower figure shows the summed corrections 
adjusted by increasing the value of <I>  to 491 eV from the original 351 eV. The theoretical 
curve agrees well with the data, and can be used to extrapolate to higher energies with 
confidence. 

The amount that these terms modify the basic Bethe-Bloch stopping power is indicated by 
the line called “2% Stopping” in Figure 5 . The gap between this line and the thick <I> line 
indicates a 2% change in stopping power. At 10 MeV/u, the shell correction modifies the 
stopping power by about 6%, while at 100 MeV/u the correction is 1%. 
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Figure 6 Determining (ln<I> + Shell Corrections) for Au(79) 

The upper figure shows experimental data for the stopping of H ions in a target of gold, 
from a total of 26 papers, in a manner similar to that in Figure 5. The data has been 
reduced using Eq. 26, so the plot indicates the summed terms of ln<I> +C/Z2 as a function 
of ion energy, MeV/u. The curved line shows the summed corrections, while the straight 
line indicates the calculated value of <I> = 583 eV, Eq. 25.  

The value of <I> can be empirically determined by moving the curve vertically until it fits 
the data. The lower figure shows the summed corrections adjusted by increasing the fitted 
value of <I> to 782eV from the original 583 eV. The theoretical curve agrees well with the 
data, and can be used to extrapolate to higher energies with confidence. 

If one wishes to include ions heavier than protons, corrections have to be made for the 
Barkas effect (the Z13 effect) and for possible neutralization of the particle. These 
corrections, discussed later, have been applied to the He data.Note on the right of both plots 
is a tabulation of the sources for all the plotted data, with the number of data points above 
4 MeV from each citation. A total of 25 experimental papers have been published on the 
stopping of H in Ag at high energy, with a total of 105 data points above 4 MeV. 

With the good agreement between the theoretical curve and the data, the curve in Figure 5 
may be used to extrapolate the stopping of H in Ag to higher energies where there is no 
data.  

Similar data and theoretical curves are shown in Figure 6 for H ions stopping in Au. The fit 
to the data allows one to predict that the stopping power is accurate to about 1% over the 
energy of the experimental data. For higher energies, the effect of the shell corrections 
becomes less important (note the divergence of the “2% Stopping” curve) so this accuracy 
probably remains at 1%. 
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Figure 7 Using both H and He data Corrections to Ta(73) and Al(13) 

If needed, it is possible to include experimental data from heavier ions than H in order to 
establish an empirical value of <I>. The  figures shows experimental data for the stopping 
of both H  and He ions in a target of tantalum, upper figure, and in aluminum, lower figure, 
in a manner similar to that in Figure 5 . The data has been reduced using Eq. 26, so the 
plot indicates the summed terms of ln<I> +C/Z2 as a function of ion energy, MeV/u. 

 

If needed, it is possible to include experimental data from heavier ions than H in order to 
establish an empirical value of <I>. Figure 7 shows experimental data for the stopping of  
both H and He ions in a target of tantalum, upper figure, and in aluminum, lower figure. 
The helium data has also been reduced using Eq. 26, so the 4x increase in stopping over 
protons is removed, and the plot indicates the summed terms of ln<I> +C/Z2 as a function of 
ion energy, MeV/u. 

If one wishes to include ions heavier than protons, corrections have to be made for the 
Barkas effect (the Z13 effect) and for possible neutralization of the particle. These 
corrections, discussed later, have been applied to the He data. 
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Figure 8 Comparison of Shell Corrections 

Shown are shell corrections for typical atoms. One set is based on Bichsel’s hydrogenic wave 
function calculations (line with squares) and one set is based on the local density 
approximation (line with circles). Above 10 MeV, there is not a significant difference 
between the two calculations. Slight offsets, such as appear in the pair of curves for Au 
targets, may be compensated by adjusting the mean ionization potential, <I>, for that 
target. In practice, using one shell correction theory rather than the other results in less 
than 0.5% changes in stopping powers for energies above 10 MeV. 

 

 

Comparison of Two Types of Shell Correction Calculations 
The two basic methods of calculating shell corrections has been briefly discussed above. 
They are not easy to compare from fundamental considerations, since the hydrogenic wave  
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Figure 9 Which Shell Correction is Best?  Stopping in Ag(47) and Au(79) 

The differences between the two basic methods of calculating shell corrections is rather 
small- any differences will affect stopping powers by only a few percent. Shown above is the 
summed (C/Z2 + ln<I>) terms for both Bichsel’s hydrogenic wave function (HWF) 
calculations, and Ziegler’s LDA calculation based on the Lindhard-Winther formalism. 
Proton stopping data is reduced using Eq. 26. Typical data is usually quoted as accurate to 
better than 1%, however the data scatter is greater than that. It is difficult to determine 
which curve more accurately fits the data. The hydrogenic shell correction indicates a 
higher correction for lower energies, and a lower correction for mid energies. 

function approach uses paramaterized functions based on experimental stopping data, 
while the LDA approach is ab initio, using realistic solid state charge distributions. The 
differences between the two results may be illustrated by comparing them with each other, 
and to experimental data.  

Shown in Figure 8 are representative examples of the shell corrections for four elements 
using both approaches. The difference between these shell corrections for the energies 
above 10 MeV/u amounts to, at most, about 0.5% in stopping power. Considering the 
completely different formalism upon which each is based, this is remarkable agreement. 

Shown in Figure 9 and Figure 10 are several examples comparing the two types of shell 
corrections with experimental data. All of these plots illustrate that although there are 
differences in the two shell corrections, it is difficult from the existing experimental data to 
determine which is more accurate.  
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Figure 9 shows two plots for experimental stopping in silver and gold. In both cases, the 
experimental stopping is reduced by using the Bethe-Bloch equation, Eq. 26, to extract the 
correction terms, ln<I> +C/Z2. At the bottom of each plot is a line marked “1% Stopping” 
which indicates the shell magnitude which affect the stopping power by 1%. Two significant 
points emerge from these plots: (1) The scatter of data (several percent in stopping) is far 
greater than the estimated experimental accuracy of individual papers (which typically are 
quoted as accurate to ∼0.2%), and (2) because of the wide scatter in data, neither calculated 
shell correction curve is obviously more accurate. 

shows similar data and shell corrections for targets of Cu and Al. For the Cu target, the 
hydrogenic shell corrections fit the low energy data better, but completely miss the high 
energy data points. Conversely, the LDA shell corrections appear to deviate from the data 
below 4 MeV/amu. 

Density Effect Correction to L0, δ/2 

When a very high energy relativistic particle passes into a solid, its energy loss has been 
found to be slightly less than predicted using the relativistic form of the Bethe-Bloch 
equation, Eq. 12. The divergence between theory and stopping data was found to increase 
at higher energies and in denser media. As an example, for protons at 1000 MeV in 
photographic emulsion, the measured proton stopping power was less than predicted by 
about 1%. At higher energies, e.g. 8 GeV, the difference reached 7% for emulsion, and 8% 
for stopping in the more dense graphite. This phenomenon is called the density effect. It only 
becomes important when the kinetic energy of the particle exceeds its rest mass (Mproton = 
938 MeV). 

The density effect correction was first treated theoretically by Swann53 and Fermi.54. 
Expansions on these original ideas have been made by Bohr39, Sternheimer55,56,57  and 
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Crispin and Fowler.58 

 

Figure 10 Which Shell Correction is Best?  Stopping in Cu(29) and Al(13) 

The differences between the two basic methods of calculating shell corrections is rather 
small. Shown above is the summed (C/Z2 + ln<I>) terms for both Bichsel’s hydrogenic wave 
function (HWF) calculations, and Ziegler’s LDA calculation based on the Lindhard-Winther 
formalism. The upper curve is for a target of Cu(29) and the lower target is Al(13). Proton 
stopping data is reduced using Eq. 26. Typical data is usually quoted as accurate to better 
than 1%, however the data scatter is greater than that. It is difficult to determine which 
curve more accurately fits the data. For example, in the upper Cu(29) plot, at high energy 
the HWF curve fits the 70 MeV data well, but then has less accuracy for low energies, 1-3 
MeV/u. The reverse is true for the LDA shell correction. 

The original work of Bethe and Bloch ignored the dielectric properties of the medium. 
Fermi first discussed how these properties might be included into the general Bethe-Bloch 
formalism. Basically, in dense media the dielectric polarization of the material alters the 
particle’s fields from their free-space values to those characteristic of the macroscopic fields 
in the dielectric. Since this approach implies that macroscopic fields are modified, it is 
usually assumed that there is little effect on close collisions since these usually are 
considered to be an interaction between the particle and a single electron in a harmonic 
potential. As usual, there is a problem in defining the impact parameter distance between 
close and distant collisions, but this is less important in the density effect correction 
because the impact parameter for distant collisions may be considered to be much larger 
than atomic dimensions without impacting the magnitude of the effect. 
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Figure 11 Density Corrections, δ/2 

Density corrections, δ/2, have been tabulated in Ref. 62 for all elemental targets. An 
example of typical corrections is shown for proton energies above 100 MeV. Since this 
correction involves the dielectric constant of the material, there is no simple relationship 
between its magnitude and the target atomic number. In general, targets of light atoms 
have a larger correction, but exceptions occur, see Al[13] above. Gas targets have no density 
correction. 

There is no simple algorithm for the density effect, because the dielectric response of the 
target material is required input in addition to the normal parameters about the particle 
and target. Shown in Figure 11 is an example of typical density corrections. 

For tables of predictions of the density effect in many common high-energy physics 
materials, see Inokuti and Smith (59), Ashley (60), Bichsel (61), and ICRU report #37 (62). 

THE BARKAS CORRECTION,  L1 
The basic stopping equation for high velocity particles was shown as: 

Eq. 15  S
Z

Z L=
κ
β

β2
2 1

2 ( )  

where the variable L, called the Stopping Number, was defined to include the correction 
factors to the stopping equation for high velocity particles. Traditionally, it has been 
defined as an expansion in powers of the atomic number of the particle: 

 L(β) = L0(β) + Z1L1(β) + Z1
2L2(β)... 

In general, these terms have decreasing significance in determining the stopping powers of 
ions. To illustrate their relative contribution, consider the case of 10 MeV protons in silver, 
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Ag(47) - the terms will contribute: L0 ≈ 98.8%, Z1L1 ≈ 1.1%, Z12L2 ≈ 0.1%. However, there are 
special situations in which the higher-order terms become more significant. 

Much of the work on the higher order terms, L1 and L2, has been stimulated by two 
remarkable kinds of experimental evidence which highlighted inadequacies in the Bethe-
Bloch equation: 

1. The discovery of different ranges for particles at the same velocity and in the same 
target, whose only difference was that one had a positive charge and the other had a 
negative charge. Since the Bethe-Bloch equation, Eq. 15 above, shows only a stopping 
dependence on Z12, there should be no difference in the stopping power of positive particles 
when compared to those of equivalent negative particles. 

2. The discovery of errors in the scaling of stopping powers for particles at the same 
velocity and in the same target, whose only difference was their amount of charge. 
According to the Bethe-Bloch equation, Eq. 15, a particle with charge +2 should have four 
times the stopping of a similar particle with charge +1. However, the stopping of +2 charged 
particles was discovered to exceed 4x that of an equivalent +1 charged particle 

Both of these experimental results will be discussed below, with some emphasis on the 
historical path leading to an understanding of how these remarkably different experiments 
led to a single explanation and solution. This final resolution concerns a correction to the 
basic Bethe-Bloch assumption that the initial distribution of target electrons are uniformly 
distributed about quiescent atoms. However, a positive charge will pull these target 
electrons towards it as it approaches, increasing the local electron density, while a negative 
charge will repel them. For the case of similar negative and positive particles, example (1) 
above , this polarization of the target will cause positive particles to pass through a slightly 
higher density of target electrons, increasing its energy loss relative to that of a negatively 
charged particle. At high velocities this effect may becomes negligible, since the target 
electrons do not have time to move, but near the maximum of the energy loss of light 
particles, about 1 MeV/amu, this effect becomes apparent. In the case of particles with 
different charges, example (2) above, a higher charged particle will pass through a slightly 
higher density of target electrons compared to the singly charged particle, increasing its 
stopping above what might be expected. 

The Barkas Effect from Charge Sign Considerations 

The Barkas Correction, Z1L1, was named after Walter Barkas, who discovered in 1956 a 
difference in the ranges of positive and negative pions in photographic emulsion, and 
showed that the range of negative pions was longer than that of positive pions.63 This range 
difference was small, about 0.36%, but Barkas measured it with great precision and 
established the clear unexpected difference. The explanation of this difference was later 
suggested by Barkas as being caused by a correction to the first-order Born approximation 
of the Bethe-Bloch equation.64 Positive projectiles tend to pull electrons towards its 
trajectory, while negative particles tend to repel them. The early experimental work by 
Barkas and others has been reviewed by Heckman.65 

This work prompted a series of papers by Ashley et al. from 1972-74.66,67,68 These papers 
presented a non-relativistic stopping power correction based on a harmonic oscillator 
approach. The authors assumed that close collisions would not be significant in the L1 
correction, and presented results for a correction to distant collision events. They assumed 
a target electron in a harmonic oscillator potential, which for small displacements varied 



J. Appl. Phys / Rev. Appl. Phys., 85, 1249-1272 (1999)      Page 25 of 51 

the force on the electron. This was a correction to the original approach of Bohr who 
assumed that the force on the electron was independent of small displacements.6 The 
Ashley correction led to a term in Z13 for the energy transfer to distant collisions. They 
suggested for the high velocity limit a form: 

Eq. 27  
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where v is the velocity of the particle, ω is the free electron gas plasma frequency, and aω is 
lower limit of the impact parameter for the distant collisions. This high velocity limit is for 
v1 >> ωaω. The authors refined this approximation over several papers, and produced a 
useful paramaterized form: 
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 where x = (β α)2 / Z2  and b = χηZ21/6 

The term χ is a free-electron-gas parameter which corrects for binding forces, and has a 
value of about 21/2. This expression includes a tabulated function, Farb, included in the final 
paper. 

Soon after Ashley’s first paper, Jackson and McCarthy suggested a different minimum 
impact parameter, aω = (h2mω)½.69 Hill and Merzbacher performed a similar quantal 
calculation, but expanded the electron’s harmonic potential to second order. 70 

Lindhard reviewed these approaches, and suggested that the omission of close collisions 
from the above studies was wrong, and that these effects would be about as great as the 
distant collisions.71 The final correction would be almost twice what had been previously 
estimated. This suggestion of Lindhard was later supported by experiments measuring the 
stopping of p_ (anti-protons) in silicon.72 
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Figure 12 Excess Stopping for He and Li Ions 

The figure comes from the stopping data of Andersen et al. for H, He and Li ions in targets 
of Al, Cu, Ag and Au.73  The data was taken with the same targets, at identical ion 
velocities, in order to investigate deviations from the Bethe-Bloch equation which indicates 
that stopping should be proportional to Z12. The plot shows the excess stopping, in %, above 
this level. He stopping, SHe, exceeds four times the H stopping, 4SH, by up to 3%. The Li 
ions have extra stopping over 9SH by up to 3%. 

The Barkas Effect from Charge Magnitude Considerations 

A series of experiments by H. H. Andersen et al. added a different perspective to 
understanding higher order terms of the Bethe-Bloch equation. They reported accurate 
measurements of the stopping of H, He and Li particles at the same velocity in the same 
targets.73 From the Bethe-Bloch equation, one expects that the stopping of particles of 
different atomic number would scale as Z12 (the mass of the particle is assumed to be far 
larger than that of an absorbing electron, so the mass difference between particles was 
assumed to have negligible effect). Andersen found that the ratio of stopping exceeded Z12 
scaling by a few percent, see Figure 12. This plot shows the extra stopping of the heavier 
ions using the relation: 

Eq. 29  ∆S = [SZ1 - Z12SH] / SZ1 

where SH is the stopping power of Hydrogen ions, and SZ1 is the stopping of He or Li ions at 
the same velocity in the same target. The extra stopping, ∆S, reaches 3%. The excess 
stopping increases slightly with target atomic number. The experimental data has several 
peculiarities. The He in Au curve shows a distinctly different slope than the approximate 
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1/E decrease of the other He stopping curves. One He curve (Ag target) and all the Li curves 
show a peak in the excess stopping, while the others show no peak. 

Andersen et al. suggested that their experimental stopping powers for H, He and Li 
(covering the energy range of 0.8-7.2 MeV/u) could be fit by using complex Barkas + Bloch 
terms (the Bloch correction will be discussed in the next section): 

Eq. 30  Z12L2  (Bloch term)   =  -1.6 ( Z1 v0 / v )2 

Eq. 31  Z1L1 (Barkas term)  =  ( )



 − V

VZ
ZL ln264.0168.2

22/1
2

1
0  

    V  ≡  ( v /  v0Z2
1/3 ) 

where Z1 is the particle charge, v is the particle velocity and v0 is the Bohr velocity (25 
keV/u) and Z2 is the target atomic number. Note that the Barkas term depends on L0, the 
basic stopping number which includes shell corrections and the mean ionization potential of 
the target. These proposed correction terms are not clean expansion terms relative to the 
particle’s charge, which was the original assumption in the expansion of the Bethe-Bloch 
equation into stopping numbers dependent on integer powers of the particle charge. 

Bichsel approached the problem of the Barkas Correction by a limited empirical 
approach.27,48,83 He started with a variation of the Ashley equation, Eq. 27, and used only 
Andersen’s experimental stopping data shown in Figure 12 to extract a simpler Z1L1 
correction expression than that shown in Eq. 30 and Eq. 31. His results were: 

Eq. 32  Z1 L1  =  Z C1
2/ β α  

where C and α were constants which varied with various targets:  
Target C α 
Al (13) .001050 0.80 

Cu (29) .002415 0.65 
Ag (47) .006812 0.45 
Au (79) .002833 0.60 

This fit was limited to He ions over the narrow energy range of the experimental data, 1-6 
MeV/u. The expression is asymptotically incorrect since it rapidly diverges for energies 
below 1 MeV/u. 

Theoretical Barkas-Effect Calculations 

Mikkelsen, Sigmund, and Esbensen have used various theoretical approaches to evaluate 
the Barkas correction term based on these concepts, see Figure 13 for an example for a 
silicon target.A model using a harmonic oscillator with an oscillator energy corresponding 
to the mean ionization potential of silicon, 165 eV, was first used to generate an explicit 
quantal evaluation of the Barkas term.74,75 This calculation showed that the Lindhard 
suggestion, that there would be approximate equi-partition between energy losses to close 
and distant collisions71, was supported by the calculation. This study then extended the 
analysis to a model using a static electron gas, deriving a self-consistent polarization field 
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Figure 13 Theoretical evaluation of the Barkas Correction for Silicon 

Shown are evaluations of the Barkas effect using various models by Sigmund, Mikkelsen 
and Esbensen.74-79 The single oscillator model considers the target as an oscillator with a 
resonance frequency of I/h, where I is the mean ionization energy or the target atoms. The 
oscillator model uses a spherical harmonic oscillator, with the Born series evaluated up to 
second order and preserving shell corrections in evaluating the Barkas correction. The 
Lindhard gas model assumes the Lindhard interaction of a particle to an electron gas with 
a resonance frequency of I/h.87 The dielectric model considers the particle in a self-
consistent polarized dense electron gas, and uses the local density model to evaluate the 
Barkas correction. 

for the medium, and again reached the conclusion that the Lindhard ideas were 
approximately correct.76 The evaluation of the Barkas correction term was also evaluated 
using the local-density-approximation (see Appendix) using a Lenz-Jensen model for the 
target atoms.77 This work was further extended to find  a complete solution using a time-
dependent Schrodinger equation for the interaction between the particle and a target 
electron represented as a quantum harmonic oscillator.78  

All these approaches have been reviewed by Sigmund, who discussed many relevant 
approaches to stopping powers in the region where the Barkas correction was significant.79  

Unified Barkas Correction Factor 

The Barkas effect is caused by target electrons responding to the approaching particle, and 
slightly changing their orbits before any energy loss interaction occurs (called target 
polarization). At high energies (above 20 v0 ≈ 10 MeV/u) the Barkas effect becomes 
insignificant because the ion will be moving too fast to cause initial motion of the target 
electrons. At low energies, <<1 MeV/u, the Barkas effect is difficult to isolate in 
experiments because of the onset of neutralization of the ion. That is, at low velocities  
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Figure 14 The L1 Barkas Correction Term for Andersen Stopping Data 

The figure shows the data of Andersen et al. for He ions in targets of Al, Cu, Ag and Au (see 
Figure 12)73 This plot shows the result of using this data to solve the Bethe-Bloch equation 
for Z1L1 using Eq. 33. Although the original data shows a marked Z2 effect, with the excess 
He stopping increasing with target atomic number, this effect is compensated by the shell 
corrections. The reduced data shows virtually no target effect in the L1Z1 Barkas term. 

Also shown in this curve is precision stopping data for protons and anti-protons in 
silicon.72,80 The value of L1 is positive for both particles, however the value of the stopping 
number term, Z1L1, will be additive for protons, and subtractive for anti-protons. 

(below 5 v0 ≈ 0.6 MeV/u) the ion will begin to pick up electrons which will cause its charge 
to be partially shielded, causing any target polarization effects to be overshadowed by more 
dominant changes in the particle/target interaction. (Particle charge neutralization was 
discussed previously, see Eq. 17.) 

The experimental analysis of the Barkas effect concerns ions with energies over the limited 
interval of about 5 - 20 v0 (0.6 - 10 MeV/u). In order to find a unified approach to the Barkas 
effect, one must convert all the relevant experimental and theoretical data to a common 
view. 

Shown in Figure 14 is Andersen’s He/H stopping data, illustrated in original form in Figure 
12, but now reconfigured using Eq. 13 to extract values of L1. That is, Eq. 13 is inverted to 
solve for Z1L1 as a function of the experimental stopping powers: 

Eq. 13 [ ]S
Z

Z L=
κ
β

β β β2
2 1

2 2L ( ) +  Z L ( ) +  Z ( ) ...0 1 1 2 2
 

Inverting to solve for Z1L1: 

Eq. 33  Z L ( ) = ( ) -1 1 0β
β

κ
β

S
Z Z

L Z Lexp
2

2 1
2 1

2
2−  

The result is shown in Figure 14 for the four targets, Al, Cu, Ag and Au. Note that the Z2 
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dependency noted in the original data has disappeared, since this has been accounted for by 
the L0 shell corrections. 

Also shown in Figure 14 are representative stopping results from precision measurements 
of protons and anti-protons in silicon, discussed before.72,80 These papers extracted the 
Barkas correction directly by assuming it was proportional to exactly one-half the difference 
between proton and anti-proton stopping in the same target, at the same velocity. The 
Barkas factor was determined by dividing this stopping difference by the Bethe-Bloch pre-
factor, shown above in Eq. 13. Remarkably, these results overlap the He results for four 
different targets, reinforcing the conclusion that the Barkas term is independent of target 
atomic number. 

Most important, Figure 14 shows that the two basic Barkas effects described above are 
probably the same effect, seen in two different kinds of experiments. The proton/anti-proton 
stopping shows differences associated with the particle charge sign, while the He/H excess 
stopping shows differences from the basic Bethe-Bloch Z12 stopping formalism. Both of 
these effects are caused by target electrons having time to polarize (move) in response to 
the incident charged particle. For the anti-proton data, Z1 = -1, L1 will be positive as shown 
but the value of Z1L1 will be negative. Hence Z1L1 for protons will contribute to the stopping 
(increasing its magnitude) while it will be subtracted from the anti-proton stopping. This 
may be viewed as an increased local electron density for the positive particle, and a 
decreased local electron density for the negative anti-protons. 

To find an overall Barkas correction factor, we combine three independent sources of 
Barkas correction values: (1) the experimental stopping differences found for proton/anti-
proton energy loss, see Figure 14, (2) the enhanced stopping of He particles over that 
expected by Bethe-Bloch Z12 scaling, and (3) the theoretical modeling of Mikkelsen et al. 
based on polarization of the medium by incoming particles, see Figure 13. These values can 
be fitted using the simple expression: 

Eq. 34  L1  =  SLSH / (SL + SH) 

  with SL  =  0.00182 E , and SH  =  19.6 / E (keV/u)0.72 

where the particle energy units are keV/u. This formula is shown as a heavy solid line in 
both plots of Figure 15, which compares the fit to both experimental data (upper plot) and 
theoretical calculations (lower plot). 

Note that Figure 12 also included data for Li ions, which were not used for this fitting of the 
Barkas effect. The fall-off of the Li excess stopping powers below 2 MeV/amu may be due to 
partial neutralization of the Li ions. According to Eq. 17 Li ions begin to neutralize below 
2.3 MeV/amu, Z1* ≤ 0.99 Z1. Although Eq. 17 has limited validity for light ions, it offers a 
cautionary indication that this data may be below the valid velocities for the Bethe-Bloch 
formalism. Hence this data was not used for fitting the Barkas effect term. 

Empirical Barkas Correction Term 

The above evaluation of the Barkas correction may be extended using a larger database of 
experimental values. Experimental stopping powers may be reduced using Eq. 33 to extract 
the Barkas correction for every element with data, see Figure 16and Figure 17. These 
curves show the Barkas effect is quite close to the one extracted from the analysis  
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Figure 15 Preliminary Analytic function for the Barkas Correction 

Shown is an analytic function which can be used to represent the Barkas Correction, L1, in 
calculations of stopping powers. The upper plot shows how well this curve fits the 
experimental data of the proton/anti-proton stopping powers, and also the enhanced 
stopping powers for He ions over proton stopping. Since the maximum effect on stopping is 
about 3%, the fit is accurate to about 0.2%. The lower plot shows the same Barkas 
correction with the four theoretical evaluations discussed in the text. These theoretical 
calculations were used for the low energy portion of the fitted Barkas curve (<0.5 MeV/u). 

shown in Figure 15, however there is a distinct variation with target atomic number. The 
extracted Barkas correction values may be empirically fit using the expression: 

Eq. 35  Z L
L L

L L
low high

low high
1 1 = +

 

where:  Llow = .001 E  and  Lhigh = (1.5/E0.4) + 45000/Z2 E1.6 

with the energy , E, having units of keV/u. This expression goes to zero for both low and 
high values of ion energy. Note that this empirical Barkas correction term is dependent on 
the other terms used in Eq. 33, especially the shell correction. All empirical calculations of 
stopping powers are dependent on using self-consistent approximations. Since the shell 
corrections are not considered accurate below 1 MeV/u, this is also the limit of the above 
Barkas correction. The plots show the extracted Barkas term to lower energies in order to 
see the general trends. 

Two final corroborative plots for this empirical Barkas correction are shown in Figure 18. 
At the beginning of this discussion of the Barkas effect, Figure 13  showed four theoretical 
calculations of the Barkas correction for silicon targets. Shown in the upper part of Figure 
18 is the empirical correction for silicon from Eq. 35, with the experimental data for H and 
He ions stopping from 15 papers (102 data points). The agreement is good. 

Figure 18 shows in its lower plot the fit for Li ions in all solid targets. This shows  
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Figure 16 Barkas Correction for C, Al, Fe, Co, Ni and Cu 

Shown are the Barkas correction terms to the Bethe-Bloch stopping equation extracted 
from experimental data using Eq. 33. The upper curve shows data from C and Al targets, 
while the bottom curve shows data from Fe, Co, Ni and Cu targets. Clearly, the data do not 
indicate a target-independent Barkas correction value in the two plots. An empirical 
Barkas correction expression, Eq. 35, is shown as a thick line in each plot. In the upper 
plot, for C and Al targets, the two lines are clearly separate, with the upper curve being for 
carbon targets. In the lower plot, the separate curves for the Barkas correction for Fe, Co, 
Ni and Cu are too close to separate. Note that this empirical Barkas correction is only valid 
when used with the other corrections used in Eq. 33, especially the shell correction term. 

important support for this Barkas correction, Z1L1, because of its very large contribution to 
the stopping of Li ions. For example, for 1 MeV/amu Li ions in Au, the Barkas correction is 
25% of the total stopping power. However, the scatter of data in the figure is quite small, 
such that the average stopping error is less than 4. 

THE BLOCH CORRECTION,  L2 
The basic stopping equation for high velocity particles, as traditionally formulated, was 
shown as: 

Eq. 15  S
Z

Z L=
κ
β

β2
2 1

2 ( )  

where the variable L, called the Stopping Number, was defined to include the correction 
factors to the stopping equation for high velocity particles. Traditionally, it is defined as  
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Figure 17  Barkas Correction for Ag, Sn, Pt and Au 

Shown are the Barkas correction terms to the Bethe-Bloch stopping equation extracted 
from experimental data using Eq. 33. The upper curve shows data from Ag and Sn targets, 
while the bottom curve shows data from Pt and Au targets. Clearly, the data do not indicate 
the same Barkas correction values as shown in Figure 14. An empirical Barkas correction 
expression, Eq. 35, is shown as a thick line in each plot. Note that this empirical Barkas 
correction is only valid when used with the other corrections used in Eq. 33, especially the 
shell correction term. 

expansions of the particle’s charge: L(β) = L0(β) + Z1L1(β) + Z1
2
L2(β). This paper has 

explored the primary corrections contained in L0 and L1, which may make significant 
changes to calculated stopping values. Now, we consider the smaller Bloch Correction, L2. 
As discussed in the Introduction, Bloch attempted in 1933 to understand the differences 
between classical and quantum-mechanical methods of approaching the problem of the 
stopping of a high velocity particle.10 He showed that Bohr’s harmonic oscillator approach 
was valid quantum mechanically, within limits. Bloch separated the consideration of 
impact parameters into two regions. For small impact parameters, Bloch considered the 
interactions to be that of free particles, as Bohr had done. However, for larger impact 
parameters, he showed that higher-order terms were also necessary, in particular the Z14 
term. He estimated that this correction was of the order of : 
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Figure 18 - Barkas Correction for Silicon Targets, and for Li Ions 

The theoretical Barkas corrections shown in Figure 13 were for a target of silicon. In order 
to evaluate the accuracy of the proposed empirical Barkas correction, this term needs to be 
compared with the extensive experimental data for H and He ion stopping in silicon. The 
upper curve shows the correction for silicon, along with the experimental data from 24 
citations. The agreement is well within the scatter of experimental data. 

For Li ions, the Barkas correction, Z1L1, is a significant contribution to stopping. For Li in 
Au at 1 MeV/amu, this correction is 25% of the total stopping. Shown are all available 
experimental stopping powers for Li in solids, along with the Barkas corrections for Al 
(upper thick curve) and Au (lower thick curve). If one omits the single result for Li in Al, 
Au, and Ag at 1 and 2 MeV/amu, then the remaining 15 papers show complete agreement 
with the proposed empirical correction term. Since this correction term is so large, 10-25%, 
and the fit results in a stopping accuracy of about 4%, this data corroborates the empirical 
Barkas correction. 
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where α = the fine structure constant, r0 is the typical radius of a target atom, v0 is the 
typical velocity of a target electron, and b is the impact parameter. This correction applies 
to the case where b >> r0. By combining this result with the close-collision solution, Bloch 
proposed: 
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where ψ is the logarithmic derivative of the gamma function, sometimes called the 
digamma function by inebriated mathematicians. This expression does not reduce to the 
Bethe-Bloch formula for very high velocities, Z1α/β → 0, because Bloch made a mistake in 
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estimating the close-collision cross-section. Various studies have corrected the mistake, 
extended the Bloch approach, and made formulations which allow it to be approximated 
with simple expressions.81-82 

The difference between Bloch’s expression above, and Bethe’s original expression, may be 
formulated as a Taylor series based on even powers of Z1. The first term of this expansion is 
often considered to be an accurate estimate of the Bloch correction term, L2.71 

Modern evaluations of the Bloch term have been reviewed by Sigmund.79 He points out that 
the contribution of this term is negligible for low particle energies, i.e. below 2Z1e2/hv (100 
keV protons). As soon as this correction becomes noticeable, one should also expect higher 
order terms, e. g. the L3 and L4 terms, to begin to contribute. By ending the summation 
series of the total stopping number, L, at the Bloch term, L2Z12, the result is either 
insignificant or possibly wrong. For light ions, the Bloch term clearly overestimates the 
even corrections near the peak of the stopping power curve. 

From a practical viewpoint of calculating accurate stopping powers, Bichsel has proposed a 
simple parameterization of the Bloch correction which accurately fits a wide range of high 
velocity stopping data:83,27  

Eq. 38 Z12L2  =  -y2 [1.202 - y2 ( 1.042 - 0.855 y2 + 0.343 y4 )] 

   where y = Z1 α / β   (α=1/137) 

For low velocities, the value of Z12L2 → -0.58 - ln(y), and thus the Bloch correction provides 
the transition to the classical stopping power formula of Bohr. For high velocities, i.e. y → 
0, Z12L2 →.-1.2 y2. As will be shown in the next section, this term is usually quite small. 

This expression is derived in conjunction with Bichsel’s calculation of the other stopping 
numbers, especially his expressions for the shell correction, the mean ionization potential, 
and the Barkas correction, L1. However, since this Bloch correction term is usually quite 
small, the Bichsel approach is quite useful in practice. 
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RELATIVE MAGNITUDE OF BETHE-BLOCH CORRECTIONS  
It is important to put the various stopping numbers into perspective, in order to evaluate 
their relative importance. Reviewing, the basic Bethe-Bloch stopping equation is: 

Eq. 15   S
Z

Z L=
κ
β

β2
2 1

2 ( )  

where κ ≡ 4πro2mec2 = 0.0005099 for stopping in units of keV/(1015 atoms/cm2), and   κ = 
0.3071/M2(u) for stopping units of keV/(mg/cm2). The variable L, called the Stopping 
Number, was defined to include the correction factors to the stopping equation for high 
velocity particles. Traditionally, it is defined as expansions of the particle’s charge: L(β) = 

L0(β) + Z1L1(β) + Z1
2
L2(β). In review of the previous discussions, the stopping of high 

velocity ions may be expressed using 
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which can be evaluated with: β2 ≡ (v/c)2 = 1-1/[1+E(keV)/931494 M1(u)]2 and the definition:  
f(β) ≡ ln[2mc2β2/(1-β2)]-β2  to obtain: 
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The Barkas correction term, Z1L1, may be estimated using 

 Eq. 35  Z1L1 = 
L L

L L
low high

low high+
 

where:  Llow =.001 E and Lhigh = (1.5/E0.4) + 45000/Z2 E1.6 , with energy units in keV/u.  

For the Bloch correction term, Bichsel’s simple parameterization of the Bloch correction is 
useful for this small correction term:27,84 

Z12L2  =  -y2 [1.202 - y2 ( 1.042 - 0.855 y2 + 0.343 y4 )] 

  where   y ≡ Z1 α / β,   (α=1/137)   Eq. 38 

Which gives the final stopping equation, tabulated below. 
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Consider the case of protons in aluminum at energies from 1 - 10,000 MeV. From the 
equations above, we can calculate the importance of each of the stopping number terms, see 
Figure 19 and Table-I. 

The relative importance of each term is shown below as the percent contribution of each 
towards the total stopping number, L. Values for f(β), the shell correction, and ln<I> are 
shown also, although they are part of L0. Note that f(β) is positive, while the shell  
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Figure 19 Contributions of Various Stopping Corrections for Al(13) 

Plotted are the various contributions towards the stopping of protons in aluminum, see 
Table-I and Table-II. All contributions are shown as a percentage of the total stopping 
number, L. The contribution ordinate exceeds 100% because some of the terms are negative. 
The primary stopping contributions arise from the original Bethe-Bloch equation, Eq. 10, 
and are derived from the particle velocity, f(β), and from the mean ionization potential of 
the target, ln<I>. This latter term, ln<I>, is negative, and so it reduces the stopping. The 
correction terms which are important to low energy stopping are the shell correction, C/Z2, 
the Barkas correction, L1, and the Bloch correction, L2. The Bloch correction contributes less 
than 1% to the stopping at all energies. For very high energies, the only significant 
correction term is the density correction, δ/2, which contributes less than 1%  for energies 
below ∼1 GeV/u. 

correction and ln<I> are negative terms, see Figure 19 and Table-II. 

Note that both the Z1L1 and the Z12L2 corrections for a aluminum target contribute less 
than 1% for all energies above 10 MeV. 

Considering the case of protons in gold at energies from 1 - 10,000 MeV. From the 
equations above, we can calculate the importance of each of the stopping number terms, see 
Figure 20 and Table-III. 

The relative importance of each term is shown below as the percent contribution of each 
towards the total stopping number, L. Values for f(β), the shell correction, and ln<I> are 
shown also, although they are part of L0. Note that f(β) is positive, while the shell correction 
and ln<I> are negative terms, see Figure 20 and Table-IV. 

Both the Z1L1 and the Z12L2 corrections for a gold target contribute less than 1% for all 
energies above 15 MeV/u. 

THE ACCURACY OF CURRENT STOPPING THEORY 
A natural question might concern the accuracy of modern stopping theory for predicting the 
energy loss of ions in matter. However, this question is specious in that there is no  
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Figure 20 Contributions of Various Stopping Corrections for Au(79) 

Plotted are the various contributions towards the stopping of protons in gold, see Table-III 
and Table-IV. All contributions are shown as a percentage of the total stopping number, L. 
The contribution ordinate exceeds 100% because some of the terms are negative. The 
primary stopping contributions arise from the original Bethe-Bloch equation, Eq. 10, and 
are derived from the particle velocity, f(β), and from the mean ionization potential of the 
target, ln<I>. This latter term, ln<I>, is negative, and so it reduces the stopping. The 
correction terms which are important to low energy stopping are the shell correction, C/Z2, 
the Barkas correction, L1, and the Bloch correction, L2. The Bloch correction is small for all 
energies. For very high energies, the only significant correction term is the density 
correction, δ/2, which contributes less than 1% for energies below ∼1 GeV/u. 

unified pure theoretical approach, but only a linear summation of parts as illustrated in 
Figure 19 and . The shell corrections, the Barkas correction and the density correction as 
presented in Figure 19 and Figure 20 are theoretical concepts corrected to fit experimental 
data. 

The question of the theoretical accuracy might instead be phrased: "How accurately may 
stopping powers be calculated?" Figure 21 show experimental/calculated values for the 
stopping of H and He ions in nickel targets. There is a significant spread of experimental 
data beyond the 1% accuracy typically claimed by the experimentalists. For nickel targets, 
data from 30 papers shows agreement only to about ±3%. However, this spread may be 
partly real and not experimental error. Studies have shown that metal films prepared by 
different methods (rolling, evaporation, sputtering, etc.) may have significantly different 
texture, which is defined as the degree to which the crystalline grains are aligned along a 
common axis.85 That is, the crystalline grains are not randomly oriented, but have partial 
properties of a single-crystal. Such texture can promote ion channeling which can both 
increase and decrease stopping powers depending on the orientation of the ion beam to the  
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Figure 21 Calculation Accuracy for the stopping of H and He ions in nickel. 

The accuracy of calculations of the stopping of H and He ions in nickel is shown relative to 
the experimental data reported from 30 papers. Most of the experimental values lie within 
3% of the calculated values. It is not clear whether this spread of values is due to 
experimental error (most papers claim an accuracy of 1% or better), or whether this may be 
a real variation in stopping in nickel metals prepared in different ways creating differences 
in grain size and orientation. 

target texture. Hence, some of the observed variation in stopping powers may actually be 
"real", i. e. due to structural differences in the targets and not just due to experimental 
errors. 

A more critical evaluation of the accuracy of the Bethe-Bloch stopping calculation is to 
consider Li ions. The Barkas correction for Li ions contributes Z1 greater stopping (3x) than 
for protons, see Eq. 13, and the smaller Bloch correction is Z12 greater (9x). Figure 19 and 
Figure 20 indicated that the Barkas correction would contribute about 10% of the proton 
total stopping at 1 Mev/u. For Li ions, this increases to about 25% of the total stopping, and 
this term begins to dominate the correction terms.  Shown in Figure 22 are the available Li 
stopping powers in solids relative to Bethe-Bloch calculations. There may be a slight 
underestimate of Li stopping at 1-3 MeV/u but the general accuracy is better than 5%. The 
stopping values at 2 and 4 Mev/u are from a single source, and show much larger 
divergence than that from any other citation. Excluding these data, the calculation agrees 
with the data from the other 46 different papers to about 2%. 

 

 

Finally, it should be emphasized that this review concerns elemental solid targets, and not 
compounds or gases. Chemical binding effects (usually called CBE) and physical state 
effects (PSE) are well know to cause changes in stopping powers. For water targets in  
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Figure 22 Calculation Accuracy for Li stopping in Solids. 

A strong test of the accuracy of a Bethe-Bloch stopping calculation is to consider Li ions. For 
these ions, the Barkas correction is Z1 greater (3x) than for protons, and the Bloch 
correction is Z12 greater (9x). For protons, the Barkas correction was shown in Figure 19 
and Figure 20 to be about a 10% to the total stopping at 1 Mev/u. For Li ions, this increases 
to about 25% of the total stopping, and begins to dominate the correction terms.  Shown are 
the available Li stopping powers in solids relative to Bethe-Bloch calculations. The accuracy 
is better than 5%. There may be a slight underestimate of stopping from 1-3 MeV/u. The 
stopping values at 2 and 4 Mev/u are from a single source, and show much larger 
divergence than that from any other citation. 

gaseous vs. solid targets, the PSE can reach 30% for low energy light ions, < 50 keV/amu. 
These effects are estimated to change stopping powers by less than 1% for ions with 
energies above 10 MeV/amu. For energies from 1-10 MeV/amu, both CBE and PSE may 
cause a few percent change in stopping powers, especially for light target atoms, Z2 < 10. 
Currently, a great deal of theoretical effort is focussed on understanding both the CBE and 
PSE phenomena and how corrections may be estimated to current stopping power 
calculations. 

APPENDIX 

Stopping Powers using the Local Density Approximation 

Lindhard Stopping in a Free Electron Gas 

Fundamental electronic interactions of a particle with a plasma have been extensively 
treated by Lindhard87, Neufeld and Ritchie86 and Fano15. We review primarily the results of 
Lindhard who presented generalized methods to treat the response of a free electron gas to 
a perturbation and present Lindhard’s explicit function for the interaction. 

Lindhard, in 1954, developed the first comprehensive study of the energy loss of a particle 
to a free electron gas (FEG).87 Using the first Born approximation, he found a complete 
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solution which included polarization of the medium by the particle’s fields. Later, Lindhard 
and Winther developed analytic expansions for this energy loss.88 These expressions were 
then used by Bonderup for the first calculation of stopping powers using the Lindhard 
formalism.89 Bonderup calculated the energy loss of a particle in a FEG at various densities. 
He then assumed a Lens-Jensen model for a target atom, and calculated stopping powers 
based using the Local Density Approximation (LDA) as discussed below. 

Local Density Approximation solutions to solid-state problems are widely used because they 
are usually simple to evaluate, and are quite accurate for some problems. 

The Lindhard treatment is a many-body self-consistent treatment of an electron gas 
responding to a perturbation by a charged particle. It naturally includes the polarization of 
the electrons by the charged particle and the resultant charge screening and the plasma 
density fluctuations. It treats smoothly both individual electron excitation and collective 
plasmon excitations without separate 'distant' and 'close' collision processes. Finally, when 
used with the local-density-approximation it can be directly applied to any target and, for 
example, the effects of chemical bonding or crystal structure on stopping powers can be 
treated. Lindhard's approach to the interaction of a particle with a free electron gas makes 
the following assumptions: 

• The free electron gas consists of electrons at zero temperature (single electrons are 
described by plane waves) on a fixed uniform positive background with overall charge 
neutrality. 

• The initial electron gas is of uniform density. 

• The interaction of the charged particle is a small perturbation on the electron gas. 

• All particles are non-relativistic. 

The electronic stopping of a charged particle in the local density approximation may be 
stated as: 

Eq. 40 Se  =  I v Z d x( , )ρ ρ1
2 3∫   

where Se is the electronic stopping cross-section; I is the stopping interaction function of a 

particle of unit charge with velocity, v, in a free electron gas of density ρ, Z1 is the charge of 

the particle, ρ is the electronic density of the target, and the integral is performed over each 
volume element, d3x, of the target. (We use this form of a stopping equation because it 
expands simply to the form that will be needed for heavy ions). The electronic density of a 
target atom is normalized so that its atomic number Z2 = ∫ p d3x with the integration over 

the atomic volume. Each of the three components of Eq. 40 will be discussed below. 

With these assumptions, Lindhard derived the interaction function, I, as: 

Eq. 41 I  =  
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where e and m are the charge and mass of the electron; ω0 is the classic plasma frequency 

defined as ω0
2 = 4πe2ρ/m; En is the energy and kn the wave vector of the electron in the n'th 

state; f(En) is the distribution function and is an even function of kn, and δ is a small 

damping factor. Simple polynomial fits to a numeric evaluation of Eq. 41 can be found in 
Ref. 90. 

 

Figure 23 Stopping interaction of a particle with a free electron gas. 

The stopping interaction derived by Lindhard is shown in the text as Eq. 41. It has been 
calculated for five orders of magnitude of electron density, and for three different particle 
velocities. Each curve is flat for the section where the particle is much faster than the 
electrons in low density electron gases. At about the point where the particle velocity equals 
the Fermi velocity of an electron gas (see arrows above) the interaction curve inflects. For 
greater density electron gases the interaction becomes less since some of the electrons are 
moving faster than the particle and these collisions become more adiabatic. 

The physical properties of Lindhard's particle-plasma interaction theory can be shown in 
several ways. In Figure 23 is shown the interaction term, I, of Eq. 41 and Eq. 42, versus a 
free electron gas density. Each curve has a horizontal slowly-changing section at low 
electron densities where the ion is going much faster than the mean electron velocity. Each 
curve bends down where the ion velocity becomes equal to the Fermi velocity, vF, of the free 

electron gas, defined as 

Eq. 43 vF  =  ( )h

m




 3 2 1 3

π ρ
/

 

For example, in Figure 23 the top curve is for particles with velocity of 100 keV/u = 4.4 x  
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Figure 24 The energy loss per unit distance in a free electron gas. 

The stopping power or energy loss per unit path length of a particle in a free electron gas is 
the product of the interaction strength shown in Figure 23 times the electron density. These 
two factors compete since as the electron density increases, the number of electrons per 
unit volume increases but the interaction strength decreases. The result is a linear increase 
of stopping power with electron density for dilute gases, and then a leveling off for more 
dense gases. The inflection-point for a particle is where its velocity equals the Fermi 
velocity of a free electron gas as indicated by the arrows above. 

108  cm/sec. The Fermi velocity for an electron density of 1024/cm3 is about 3.5 x 108 cm/sec, 
which is where the curve is inflecting. For low velocities, v < vF, there are mostly binary 
encounters between the projectile and the target electrons, with a maximum energy 
transfer of ∆Emax = me v1 (v1 + ve). The inflection of the curve with increasing electron 
density, when v ∼ vF, is due to two effects: the projectile can no longer ( v < 1.3 vF) excite a 
plasmon, and the electrons at the center of the Fermi sphere can not gain sufficient 
momentum in a collision to have their final states outside of the Fermi sphere. At higher 
electron densities, plasmons of the free electron gas can respond adiabatically, reducing 
energy transfer. For any single electron density there is an inflection of interaction strength 
which occurs for particles with a velocity about equal to the electron Fermi velocity. 

In Figure 24 is shown Iρ, the interaction term, I, times the electron charge density, ρ. If the 
particle has a unit charge, this plot shows the differential energy loss per unit path length, 
i.e. the stopping power, in units of eV/cm, for a particle in a uniform free electron gas. This 
figure shows how stopping power is dominated not only by the local electron density, but 
also by the interaction strength term shown in Figure 24 which depends on the ion velocity. 

Stopping Calculations using Local Density Approximation 

The electronic energy loss of a proton in a solid (in contrast to a free electron gas) can be 
calculated using the above approach. In essence, this approximation assumes that each 
volume element of the solid is an independent plasma. The stopping power is calculated for  
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a particle in a plasma of each volume element's density, and the final stopping power is 
computed by averaging over these values, weighted by their distribution in the solid. 
Referring to Eq. 40: 

Eq. 44 Se  =  ( )I v Z v dx( , ) ( )*ρ ρ1

2 3∫  

where I is the interaction of the particle with velocity, v, in a plasma of density, ρ. The 
charge of the projectile, Z*

1, has an asterisk to indicate this may be a value different from 

the atomic number because the ion may not be fully stripped. By integrating over the 
volume, dx3, we weigh each density interaction by the probability of that density occurring 
in the solid. 

An extended comment might be made to explain the local-density-approximation to those 
completely unfamiliar with it. This is a widely used method to evaluate the theoretical 
mean response of a solid to a perturbation. For our application, we consider the solid to be 
an electronic plasma with fluctuations in density. We first calculate the interaction (energy 
loss) of an energetic particle immersed in a uniform plasma sea with the same electronic 
density as any single volume element of the solid. A basic assumption is now made that the 
averaged interaction of a single particle with a uniform plasma is identical to the averaged  

 

Figure 25 Various atomic charge densities. 

The description of atoms in solids has progressed from a Thomas-Fermi description (1932-
1955) to Hartree-Fock isolated atoms (1957-1974) to complete Hartree-Fock descriptions of 
atoms in solids (1976-1982). The Thomas-Fermi atom had no shell structure, but it allowed 
analytic solutions to the complex problems of stopping and range theory, see for example 
the LSS theory (62a). The use of Hartree-Fock atoms which are not simply expressed has 
led to full numeric treatment of the interaction of particles with matter. 

interaction of a single volume element of plasma with a particle whose spatial location is 
uniformly probable. This equivalence allows the evaluation of the mean interaction of a 
single particle with a single volume of element plasma. This process is then repeated for the 
interaction of the particle with every volume element of the solid target to obtain the mean 
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interaction of the particle with the solid. 

Two of the more important assumptions in using this approach with Lindhard stopping 
theory for energy loss calculations are: 

• The electron density in the target varies slowly with position. 

• Available electron energy levels and transition strengths of the atoms of the solid are 
identical to those in a free electron gas. 

The basic physics of applying the local density approximation to stopping powers in solids 
may be seen in plots of the integrand of the stopping cross-section, Eq. 40, as evaluated for 
atomic targets, see Figure 26 to Figure 27. These plots show three curves which link the 
various parts of the stopping process.  

 

Figure 26 Interaction strength of high speed particle with copper atom. 

The nature of the interaction of a high speed particle with a solid is illustrated by 
considering a target of copper (Cu). The dotted line is the charge distribution of a Cu atom 
in a solid, see Figure 25. The dashed curve is the interaction strength, I, of a high velocity 
particle (104 keV/u) with the charge distribution. It is small only for the inner k-shell 
electrons. The product Iρ is the stopping cross-section, Eq. 44. This product is shown a solid 
line. It shows that the energy loss is evenly distributed across the Cu electrons except for 
the inner shell. 

Figure 25 shows various shapes of the charge density of Cu with the Thomas-Fermi atom 
shown as a dashed line, the isolated atom Hartree-Fock atom shown as a dotted line and 
the solid-state Cu atom shown as a solid line. The plots use for an ordinate the factor 4πr2ρ, 
where ρ is the electron density. With this factor, the area under the curve equals 29, the 
atomic number of Cu. Clearly the Thomas-Fermi atom has no shell-structure but is a 
reasonable average value. The isolated atom Hartree-Fock curve shows a pronounced shell 
structure but is has a long tail extending out many Angstroms since it is not confined. 
Finally, the solid-state structure of each individual atom is contained within 1.4 Å, with the 
electrons from 1.2-1.4 Å being averaged over the Wigner-Seitz cell of the Cu face-centered-
cubic crystal. 
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Figure 26 shows as a dotted line the same solid-state Cu distribution as shown Figure 25. It 
shows as a dashed line the value of the particle-plasma interaction term, I, of Eq. 41 and 
Eq. 42 and of Figure 23. For each radius, the density of the Cu atom is taken and the 
equivalent I is calculated as indicated in Figure 23. Since Figure 26 specifies that the ion 
has a velocity of 10000 keV/u (about 20 times the Bohr velocity) it is moving much faster 
than most of the electrons in the solid, and so its interaction is relatively independent of the 
electron velocity. In the density of electrons in Cu is mostly on the flat section of the curve 
labeled 10000 keV. 

Finally, the term ρI is plotted as a solid line in Figure 26. The area under this curve is the 
integral of Eq. 40 and hence is the stopping cross-section of a moving charged particle in 
Cu. This solid line shows how the energy loss is distributed among the various Cu electrons 
with all but the innermost electrons absorbing energy about proportional to their density. 

In contrast, Figure 27 shows the same set of curves except they are evaluated for a low  

 

Figure 27 Interaction strength of slow speed particle with copper atom. 

The interaction of a slow particle with copper. The dotted line is the electronic charge 
distribution of a Cu atom in a solid. The dashed curve is the interaction strength of the slow 
particle with this distribution. There is almost no interaction with the core electrons, and 
the interaction is almost exclusively with the conduction electrons. The solid line shows the 
stopping integrand, Eq. 44 and shows that the electronic energy transferred to either 
copper atom is mostly to the outer electrons. Since there is little energy transferred to 
either the K or L shells, it indicates there will be few x-rays produced during de-excitation 
of the atom. 

velocity particle of 100 keV/u ( about twice the Bohr velocity). The copper density curve 
(dotted line) is identical to that of Figure 25. The dashed interaction curve is quite different 
from that of Figure 26 for the particle is now at a velocity which is large only when 
compared to the low density outermost electrons of Cu atoms. For the high density 
electrons the interaction is almost adiabatic and there is little excitation. The solid line, ρI, 
is the integrand of the stopping power cross-section and it is clear that the outer shell 
electrons, about 20% of the total electrons, absorb almost 90% of the energy loss. The inner 
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k-shell electrons absorb almost no energy and one would anticipate that there would be 
almost no k-shell x-rays emitted from the Cu target. 
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Table-I 
Stopping Powers for Protons in Aluminum, Al(13) 

Proton 
Energy 
(MeV) 

Stopping 
Power 
MeV/g-

cm2 

L 
Stoppin

g 
Number 

L0 f(β) Shell+ 
ln<I> 

δ/2 
Density 

Corr. 

L1 
Barkas 
Corr. 

L2 
Bloch 
Corr. 

1 172.7 2.483 2.382 7.684 - 5.301 - 0.00001 0.1301 -0.0294 
5 57.1 4.078 4.031 9.287 - 5.256 - 0.00003 0.0533 -0.0060 

10 33.79 4.789 4.753 9.972 - 5.219 - 0.00008 0.0389 -0.0030 
50 9.582 6.383 6.364 11.52 - 5.16 - 0.00085 0.0198 -0.0006 

100 5.67 7.022 7.007 12.16 - 5.149 - 0.00273 0.0150 -0.0003 
1,000 1.746 9.034 9.029 14.25 - 5.138 - 0.08686 0.0059 -0.0000 

10,000 1.764 11.84 11.84 17.74 - 5.138 - 0.7688 0.0023 -0.0000 
Table-II 

Percent contribution towards Stopping Number  L 
Proton 
Energy 
(MeV) 

L0 f(β) Shell+ 
ln<I> 

δ/2 
Density 

Corr. 

L1 
Barkas 
Corr. 

L2 
Bloch 
Corr. 

1 95.95 309.5 - 207 - 0.0004 5.239 -1.187 
5 98.84 227.7 - 126.1 - 0.0007 1.308 -0.1479 

10 99.25 208.2 - 107.3 - 0.0016 0.8124 -0.0632 
50 99.7 180.5 - 80.48 - 0.0133 0.3116 -0.0101 

100 99.79 173.2 - 73.15 - 0.0388 0.2141 -0.0049 
1,000 99.93 157.8 - 56.85 - 0.9614 0.0661 -0.001 

10,000 99.98 149.9 - 43.39 - 6.495 0.0201 -0.000 
Table-III 

Stopping Powers for Protons in Gold, Au(79) 
Proton 
Energy 
(MeV) 

Stopping 
Power 
MeV/g-

cm2 

L 
Stoppin

g 
Number 

L0 f(β) Shell+ 
ln<I> 

δ/2 
Density 

Corr. 

L1 
Barkas 
Corr. 

L2 
Bloch 
Corr. 

1 63.58 1.098 1.03 7.68 - 6.65 - 0.0000 0.0939 -0.0294 
5 27.87 2.391 2.34 9.28 - 6.94 - 0.0001 0.0499 -0.0060 

10 18.06 3.074 3.03 9.97 - 6.933 - 0.0002 0.03776 -0.0030 
50 5.923 4.74 4.72 11.5 - 6.803 - 0.0010 0.0198 -0.0006 

100 3.639 5.415 5.4 12.1 - 6.756 - 0.0025 0.015 -0.0003 
1,000 1.203 7.478 7.47 14.2 - 6.696 - 0.0856 0.0059 -0.0000 

10,000 1.289 10.39 10.3 17.7 - 6.691 - 0.6642 0.0023 -0.0000 
Table-IV 

Protons into Gold: Percent contribution towards Stopping Number L 
Proton 
Energy 
(MeV) 

L0 f(β) Shell+ 
ln<I> 

δ/2 
Density 
Corr. 

L1 
Barkas 
Corr. 

L2 
Bloch 
Corr. 

1 94.1 699. - 606.7 - 0.0000 8.555 -2.683 
5 98.1 388. - 278.9 - 0.0033 2.087 -0.2523 
10 98.87 324.4 - 217 - 0.0052 1.229 -0.0991 
50 99.6 243.1 - 140.7 - 0.0204 0.4177 -0.0136 
100 99.73 224.5 - 123.1 - 0.0465 0.2771 -0.0064 
1,000 99.92 190.6 - 89.12 - 1.145 0.0798 -0.0011 
10,000 99.98 170.8 - 64.15 - 6.393 0.0228 -0.0006 
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